WiFi Long Shots

Get the latest copy at www.scii.nl/~elektra

Elektra Wagenrad

Why?

- •Building cheap infrastructure wherever ISP's don't see the chance of quick return of investment.
- Community Networks
- Add your motivation here ;-)

How? Make sure you have...

Finally, the beef...

- •Free line of sight
- Clear Fresnelzone (60 % free at least)
- •Good & powerful Wifi NICs that could be switched into non-standard 802.11-mode
- •Antennae with a lot of gain ;-)
- Proper mounted antennae, cables and plugs
- Decent protection against rain and moisture

Short introduction to electromagnetic waves

magnetic force

Frequency and wavelength

Free line of sight

Microwaves behave like light
If the line of sight is obstructed a long shot will
never work

With plenty of power you may penetrate a few objects like trees, but certainly only achieve 'short' distance (that is the way WiMAX goes)

Fresnel Zone

An area between the antennae that looks like a ellipsoid in 3D. If there are objects in this area, electromagnetic waves are reflected and reach the antenna on the receiving side in or out of phase. This will attenuate the signal. (In theory it can also amplify it, though. I promise – it won't...)

Waves - in or out of Phase

Wave A is the signal we want to receive, following line of sight Wave X is one disturbing wave reflected in the fresnel-zone Wave X is out of phase because it arrived later travelling a longer path.

Waves - In or out of Phase

The sum of all fresnelzone-reflected waves adds up to noisefloor N, reducing our Signal-to-Noise Ratio.

Fresnel Zone

- •The most difficult issue to deal with.
- •60 % of the Fresnelzone must be kept clear without obstructions at least. Otherwise the link will be unreliable, poor or may never work.
- •For many links the most expensive problem you have to keep the Fresnelzone clear by any means necessary. That could mean to erect your own towers, if you are not lucky enough to find a appropriate hill, building or the like.

Fresnel Zone Calculation

$$r = 0.5 * \sqrt{\lambda * d}$$

Fresnel Zone Calculation

$$r = 0.5 * \sqrt{\lambda * d}$$

Ideally would be a 80%-free Fresnel Zone, no significant signal loss. Keep at least 60 % of the Zone free – that will sacrifice some signal strength.

Fresnel Zone & Terrain Roughness

If the Fresnel Zone is 60% clear, there will be attenuation in addition to regular free space loss. A rough estimation:

- •Flat surface adds 2 dB attentuation to free space attenuation
- Small houses of similar height / forest adds about 3 dB loss
- Urban area adds estimated loss of about 5 dB

How to deal with the Fresnel Zone

The diameter of the Fresnel Zone depends on the length of the link and the wavelengthλ. Keep it small by choosing the highest frequency ⇔ smallest wavelength λ you can use.

A tradeoff for using 5.x Ghz instead of 2.4x is bigger free space attenuation, higher sensitivity to rain and fog. But Antennae have considerably higher gain at higher frequencies.

Earth Bulge

Earth Bulge

Antenna height calculation

Calculate the height of the antennae (depending on Fresel Zone radius, landscape, earth bulge).

Example:

30 km distance. Frequency 5GHz

Wavelength λ = Speed of light/Frequency λ = 299 000 000 m/sec / 5 000 000 000 Hz λ =0.06 m

Fresnel zone radius for 5GHz : $21.21m = 0.5*\sqrt{30\ 000\ m}*0.06m$

Fresnel zone radius with 40% obstructions, 60 % clear:

12.73m = 21.21m * 0.6

Antenna height calculation

Earth bulge (in the middle between towers):

13.23m=0.07843*((15km*15km)/1.333)

Tower height: 25.96m=12.73m+13.23m

Link calculation

(Example values...)

-73dB = 20dB - 1dB - 1dB - 1dB + 24dB - 135dB + 24dB - 1dB - 1dB

Transmitter(TX)-Power

More is more, but does not really help much if the Fresnel Zone is obstructed...

more power = more powerful disturbing reflections

Good receiver sensitivity is more important!

Measurment unit is mW or dBm.

```
1mW = 0 dBm 16mW = 12 dBm

2mW = 3 dBm 32mW = 15 dBm

4mW = 6 dBm 64mW = 18 dBm

8mW = 9 dBm 128mW = 21 dBm
```

Receiver sensitivity

Card	1	2	5.5	11 Mbp	S
Senao NL/SL-2511CD PLUS EXT2 (200mW, 2 MMCX connectors)	-95	-93	-91	-89	
Cisco 350 Series (100mW)	-94	-91	-89	-85	
Compaq MultiPort W200 (32mW)	-94	-91	-87	-85	
Lucent/Agere/Proxim Orinoco Gold/Silver Card (32mW)	-94	-91	-87	-82	
Netgear MA401 (PCMCIA)	-92	-88	-87	-84	
Microsoft MN-520 (PCMCIA16)	-83	-83	-83	-80	

http://freenetworks.org/moin/index.cgi/ReceiveSensitivity

A Uber-Wifi-Card ;-)

High Power (26dbm) Atheros 6G Mini-PCI Adapter-NMP-8602

Receive Sensitivity (Typical) 802.11a:

-90dBm @ 6Mbps,

-74dBm @ 54Mbps

802.11g:

-92dBm @ 6Mbps,

-76dBm @ 54Mbp

802.11b:

-96dBm @ 1Mbps

-92dBm @ 11Mbps

Tx-Power

2.412~2.472G(IEEE802.11g)

 $26 \pm 2dBm @6Mbps$

 $23 \pm 2dBm @54Mbps$

2.412~2.472G(IEEE802.11b)

 $26 \pm 2dBm @ 1, 2, 5.5 and 11Mbps$

@ 5.725 ~ 5.825GHz

 $20 \pm 2dBm @6Mbps$

17 ± 2dBm @54Mbps

Free space attenuation

Distance	@2.5 GHz	@5.9GHz
km	-dB	-dB
0.1	80.41	87.86
0.2	86.43	93.89
0.3	89.95	97.41
0.4	92.45	99.91
0.5	94.39	101.84
0.6	95.97	103.43
0.7	97.31	104.77
0.8	98.47	105.93
0.9	99.49	106.95
1	100.41	107.86
2	106.43	113.89
3	109.95	117.41
4	112.45	119.91
5	114.39	121.84
6	115.97	123.43
7	117.31	124.77
8	118.47	125.93
9	119.49	126.95
10	120.41	127.86
15	123.93	131.39
20	126.43	133.89
30	129.95	137.41
40	132.45	139.91
50	134.39	141.84
100	140.41	147.86
150	143.93	151.39
200	146.43	153.89

Rule of thump for WiFi-frequencies:

3 dB more attentuation for 50% more distance

6 dB more attentuation for 100% more distance

Link Fade Margin

```
@5.8GHz = 0.5dB/km
```

@2.5GHz = 0.1dB/km

(worst case)

Antennae

Big grid dish 24dBi 2.4GHz 27dBi 5.8GHz

Cables and plugs

Cable

Plugs

Aircom Plus Aircell 7 LMR400 RG213 N-Type Don't use crimpplugs – not waterproof

Wrap outdoor connectors with self-amalgaming tape. Don't worry too much about signal losses of different cable – just keep them as short as possible.

Example calculation @5.8GHz

```
Free space loss 30 km = -137.5dB
fade margin
                          15dB
terrain roughness = - 5dB
total propagation loss = -157.5dB
cable, connector loss = -
                           6dB
total loss
                 = -163.5 dB
                = + 54dB
antenna gain 2x
txpower (senao)
                 = + 23dB
signal strength at receiver input
                    = - 86.5 dB
```

Calculation within legal limits

Effective radiated power ERP

The sum of all gains and losses on the transmitter side.

2.4GHz in Germany 20dBm

5.8GHz " " " 30dBm

Better to have less TX-Power and more antenna gain.

Example: 5.8GHz @ 10km

Long distance timing issues of 802.11b

Propagation delay:

 $1\mu {
m sec}$ for 299 m $100\mu {
m sec}$ for 29.9km

802.11b provides very small timeslots for successful transmissions.

10 μ sec Short Inter-Frame Spacing interval 50 μ sec Distributed Point Coordination Function Inter-Frame Space 640 μ sec Contention Window

Long distance timeing issues

Some chipsets just do the trick out of the box, while others don't...

Working:

Prism 2, 2.5, 3

Orinoco 802.11b

Atheros a,b,g (untested, but tools are available to adjust timeslots for distance with **athers**)

Alternative: Adhoc-demomode

Available for Atheros, Prism and Orinoco Proprietary 802.11, doesn't necessarily work between different chipsets...

Provided by drivers: orinoco hostap madwifi

Doesn't send acknowledgements...

Initial alignment

Kismet

Links

This document: www.scii.nl/~elektra

Online link calculator: http://www.connect802.com/antenna c main.php