Änderungen

keine Bearbeitungszusammenfassung
Zeile 11: Zeile 11:  
==Dezibel==
 
==Dezibel==
   −
Das Dezibel ist das dekadisch logarithmische Verhältnisses zweier Größen. D.h. hier stehen z.B. zwei Leistungsangaben oder zwei Spannungen in einem Verhältnis.
+
Das Dezibel ist das dekadisch logarithmische Verhältnis zweier Größen. D.h. hier stehen z.B. zwei Leistungsangaben oder zwei Feldgrößen (Spannung oder Ströme) in einem Verhältnis.
    
Für die Leistung berechnet sich das so:
 
Für die Leistung berechnet sich das so:
Zeile 17: Zeile 17:  
   D = 10 * log(10) P1/ P2
 
   D = 10 * log(10) P1/ P2
   −
Für Feldgrößen (Spannung, Ströme) ist der Faktor ein anderer, nämlich 20:
+
Für Feldgrößen ist der Faktor ein anderer, nämlich 20:
    
   D = 20 * log(10) U1/ U2
 
   D = 20 * log(10) U1/ U2
   −
Wer sich an dieser Stelle fragt, wieso das jetzt 20 statt 10 ist:
+
Wer sich an dieser Stelle fragt, wieso das jetzt 20 statt 10 ist, folgt an dieser Stelle die Herleitung:
   −
   P = U * I    ich setze für I entsprechend dem Ohmschen Gesetz ein: I = U / R und multipliziere aus
+
  Es gilt:
 +
   P = U * I  
 +
   I = U / R 
 +
   
 +
  Setzt man jetzt die zweite Formal in die erste Formel ein:
 +
  P = U * U / R
 
   P = U^2 / R
 
   P = U^2 / R
 +
 +
  Nun wird dieses Zwischenergebnis in die ursprüngliche Formel zur Berechnung eingesetzt:
    
   D = 10 * log(10) U1^2 / R / U2^2 / R
 
   D = 10 * log(10) U1^2 / R / U2^2 / R
 
   D = 10 * log(10) U1^2 / U2^2          (der Logarithmus "vereinfacht" das Quadrat zur Multiplikation mit 2)
 
   D = 10 * log(10) U1^2 / U2^2          (der Logarithmus "vereinfacht" das Quadrat zur Multiplikation mit 2)
   D = 2 *10 * log(10) U1 / U2
+
   D = 2 * 10 * log(10) U1 / U2
 
   D = 20 * log(10) U1 / U2
 
   D = 20 * log(10) U1 / U2
   −
Damit kann ich nun eine Dämpfung berechnen.
+
Damit kann man nun eine Dämpfung berechnen.
    
Beispiel 1:
 
Beispiel 1:
Ein Sender hat eine HF-Sendeausgangsleistung von 1W und speise diese in eine Antennenleitung von 10 m ein. Am Ende der Leitung messe ich eine HF-Leistung von 0,5 W.
+
Ein Sender hat eine HF-Sendeausgangsleistung von 1 Watt und speist diese in eine Antennenleitung von 10 m Länge ein. Am Ende der Leitung wird eine HF-Leistung von 0,5 Watt gemessen.
    
   D = 10 * log(10) P1 / P2
 
   D = 10 * log(10) P1 / P2
Zeile 44: Zeile 51:  
==Der Pegel==
 
==Der Pegel==
   −
In der Technik haben sich Pegelangaben in db durchgesetzt. Man gibt z.B. die HF-Sendeausgangsleistung in dB an.
+
In der Technik haben sich Pegelangaben in dB durchgesetzt. Man gibt z.B. die HF-Sendeausgangsleistung in dB an.
Wir erinnern uns: Dezibel --> dekadisch logarithmisches Verhältnis zweier(!) Größen. Bedeutet also, dass wir einen Referenzpegel brauchen. In der Auswahl sind wir da frei, aber praktisch hat sich da 1 mW breit durchgesetzt. Wird ein Pegel mit dem Referenzwert 1 mW verwendet, wird dies durch die Angabe '''dBm''' angezeigt.
+
Wir erinnern uns: Dezibel --> dekadisch logarithmisches Verhältnis zweier(!) Größen. Bedeutet also, dass wir einen Referenzpegel brauchen. In der Auswahl sind wir da frei, aber praktisch hat sich 1 mW breit durchgesetzt. Wird ein Pegel mit dem Referenzwert 1 mW verwendet, wird dies durch die Angabe '''dBm''' angezeigt.
 +
 
 +
Wenn mit Spannungen gerechnet wird, so hat sich als Referenzspannung im Bereich der Nachrichten-/ Funktechnik der Referenzwert von 1µV etabliert. Ausgedrückt wird dies dann durch '''dBµV'''.
    
Nehmen wir wieder unser obiges Beispiel:
 
Nehmen wir wieder unser obiges Beispiel:
   −
Sender hat eine Ausgangsleistung von 1W:
+
Der Sender hat eine Ausgangsleistung von 1 Watt:
    
   = 10 * log(10) P1  / 1 mW
 
   = 10 * log(10) P1  / 1 mW
Zeile 59: Zeile 68:  
==Rechnen mit Dezibel==
 
==Rechnen mit Dezibel==
   −
In unserem obigen Beispiel haben wir die Ausgangsleistung von 1W in das 10m lange Antennenkabel eingespeist. Welcher Pegel kommt am Ende des Kabels an?
+
In unserem obigen Beispiel haben wir die Ausgangsleistung von 1 Watt in das 10m lange Antennenkabel eingespeist. Welcher Pegel kommt am Ende des Kabels an?
    
Hier zeigt sich nun der Vorteil, wieso die Nachrichtentechniker so gerne mit Pegel und Dezibel rechnen. Man muss jetzt nur noch addieren und subtrahieren:
 
Hier zeigt sich nun der Vorteil, wieso die Nachrichtentechniker so gerne mit Pegel und Dezibel rechnen. Man muss jetzt nur noch addieren und subtrahieren:
   −
30 dBm - 3 dB = 27 dBm
+
  Pegel am Eingang - Kabeldämpfung = Ausgangspegel
 +
  30 dBm           - 3 dB         = 27 dBm
   −
Am Ende der 10 m kommen noch 27 dBm Leistung an. Wir rechnen mal zur Kontrolle in Leistung (W) um:
+
Am Ende des 10m langen Antennenkabels kommen noch 27dBm Leistung an. Wir rechnen mal zur Kontrolle in Leistung (Watt) um:
    
   A  = 10 * log(10) P1 / 1 mW
 
   A  = 10 * log(10) P1 / 1 mW
Zeile 77: Zeile 87:  
Die Strahlenleistung der Antenne kann auch auf verschiedene Arten angegeben werden.
 
Die Strahlenleistung der Antenne kann auch auf verschiedene Arten angegeben werden.
   −
Gehen wir am Anfang von einem Kugelstrahler aus.
+
Gehen wir am Anfang von einem theoretischen Kugelstrahler aus.
 
Der Kugelstrahler ist eine punktförmige Antenne, die die gesamte Leistung kugelförmig abstrahlt. Einen solchen Strahler nennt man auch Isotropenstrahler.
 
Der Kugelstrahler ist eine punktförmige Antenne, die die gesamte Leistung kugelförmig abstrahlt. Einen solchen Strahler nennt man auch Isotropenstrahler.
   −
Ein anderer (und viel praktischer) Strahler könnte ein Dipol sein. Der Dipol strahlt aber nicht gleichmäßig in den gesamten Raum ab. Theoretisch gibt es beim Dipol sogar Richtungen, in denen er gar keine Leistung abstrahlt. Da die Leistung aufgrund des Energieerhaltungssatzes nicht "weg" sein kann, wird die Leistung also durch die Antenne fokussiert. Daher spricht man von Antennengewinn. Der Antennengewinn wird also durch Fokussierung "erkauft". Die Leistung wird nur in bestimmte Regionen gestrahlt und andere werden kaum oder gar nicht versorgt.
+
Ein anderer (und viel praktischer) Strahler könnte ein Dipol sein. Der Dipol strahlt aber nicht gleichmäßig in den gesamten Raum ab. Theoretisch gibt es beim Dipol sogar Richtungen, in denen er gar keine Leistung abstrahlt. Da die Leistung aufgrund des Energieerhaltungssatzes nicht "weg" sein kann, wird die Leistung in andere Raumrichtungen gestrahlt oder fokussiert. Daher spricht man von Antennengewinn. Der Antennengewinn wird also durch Fokussierung "erkauft". Die Leistung wird nur in bestimmte Regionen gestrahlt und andere werden kaum oder gar nicht versorgt, was praktisch ja auch sehr sinnvoll sein kann.
    
Richtantennen, wie z.B. eine Yagi-Antenne strahlen in einem engen Bereich von einigen Grad (z.B. Öffnungswinkel +- 30 Grad).
 
Richtantennen, wie z.B. eine Yagi-Antenne strahlen in einem engen Bereich von einigen Grad (z.B. Öffnungswinkel +- 30 Grad).
 
Ein Parabolspiegel hat einen Öffnungswinkel von wenigen Grad (z.B. +-2 Grad) und strahlt damit die gesamte Leistung in diesen kleinen Raumbereich hinein.
 
Ein Parabolspiegel hat einen Öffnungswinkel von wenigen Grad (z.B. +-2 Grad) und strahlt damit die gesamte Leistung in diesen kleinen Raumbereich hinein.
   −
Antennen haben also einen Antennengewinn, der praktisch nun auch in dB angegeben werden kann, wenn man einen Referenzstrahler hat. Zwei habe ich angerissen: Den theoretischen Isotropenstrahler und den praktischen Dipol.
+
Antennen haben also einen Antennengewinn, der praktisch nun auch in dB angegeben werden kann, wenn man einen Referenzstrahler hat, gegenüber dieser Gewinn ausgedrückt werden kann.  
 +
Als Referenzstrahler wird der Isotropenstrahler und der Dipol verwendet.
 +
 
 +
Ein Dipol hat z.B. einen Antennengewinn gegenüber einem Isotropenstrahler von 2.15dB.
 +
Wir brauchen also auch hier eine Nomenklatur, um darzustellen, gegenüber welcher Referenzantenne der Antennengewinn angegeben wird:
 +
 
 +
'''dBi''' = Antennengewinn gegenüber dem Isotropenstrahler
   −
Ein Dipol hat z.B. einen Gewinn gegenüber einem Isotropenstrahler von 2.15dB.
+
'''dBd''' = Antennengewinn gegenüber dem Dipol
Wir brauchen also auch hier Nomenklatur, um darzustellen, gegenüber welcher Referenzantenne der Antennengewinn angegeben wird:
     −
dBi = Antennengewinn gegenüber dem Isotropenstrahler
+
Die effektive Strahlenleistung wird durch '''ERP''' und '''EIRP''' angegeben. ERP (effective radiated power) ist die Strahlenleistung einer Antenne gegenüber einem Dipol und der EIRP (equivalent isotropically radiated power) gegenüber dem Isotropenstrahler.
dBd = Antennengewinn gegenüber dem Dipol
     −
Rechenbeispiel:
+
Auch hier wieder ein kleines Rechenbeispiel:
Eine 5 GHz WLAN Yagi-Antenne hat einen Antennengewinn von 17 dBi. Wie hoch ist der Antennengewinn bezogen auf einen Dipol? Wie hoch ist die effektive Strahlenleistung, wenn an der Antenne 100 mW anstehen?
+
Eine 5 GHz WLAN Yagi-Antenne hat einen Antennengewinn von 17dBi. Wie hoch ist der Antennengewinn bezogen auf einen Dipol? Wie hoch ist die effektive Strahlenleistung EIRP, wenn an der Antenne 100mW anstehen?
    
Antennengewinn zum Dipol:
 
Antennengewinn zum Dipol:
1

Eine Bearbeitung